Laser-Assisted Drug Delivery

Where Do We Stand Now?
Published:March 16, 2021DOI:
      Laser-assisted drug delivery (LADD) involves laser-induced selective destruction of the epidermis and portions of the dermis to allow deeper penetration and absorption of topically applied medications.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal


      Subscribe to Advances in Cosmetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zaleski-Larsen L.A.
        • Fabi S.G.
        Laser-Assisted Drug Delivery.
        Dermatol Surg. 2016; 42: 919-931
      1. Dermal absorption of pesticides—evaluation of variability and prevention, pesticides research no. 124, Version 1.0. Danish Environmental Protection Agency, Copenhagen, Denmark2009 (Available at:) (Accessed June 1st, 2017)
        • Hauck W.W.
        Bioequivalence studies of topical preparations: statistical considerations.
        Int J Dermatol. 1993; 31: 29-33
        • Sklar L.R.
        • Burnett C.T.
        • Waibel J.S.
        • et al.
        Laser assisted drug delivery: a review of an evolving technology.
        Lasers Surg Med. 2014; 46: 249-262
        • Bhattacharyya L.
        • Schuber S.
        • Sheehan C.
        • et al.
        Excipients: background/introduction.
        in: Katdare A. Chaubal M. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press, Boca Raton (FL)2006: 93-108
        • Konda S.
        • Meier-Davis S.R.
        • Cayme B.
        • et al.
        Age-related percutaneous penetration part 2: effect of age on dermatopharmacokinetics and overview of transdermal products.
        Skin Ther Lett. 2012; 17: 5-7
        • Bay C.
        • Lerche C.M.
        • Ferrick B.
        • et al.
        Comparison of physical pretreatment regimens to enhance protoporphyrin IX uptake in photodynamic therapy.
        JAMA Dermatol. 2017; 153: 270
        • Haak C.S.
        • Hannibal J.
        • Paasch U.
        • et al.
        Laser-induced thermal coagulation enhances skin uptake of topically applied compounds.
        Lasers Surg Med. 2017; 49: 582-591
        • Torezan L.
        • Chaves Y.
        • Niwa A.
        • et al.
        A pilot split-face study comparing conventional methyl aminolevulinate-photodynamic therapy (PDT) with microneedling-assisted PDT on actinically damaged skin.
        Dermatol Surg. 2013; 39: 1197-1201
        • Gaitan S.
        • Markus R.
        Anesthesia methods in laser resurfacing.
        Semin Plast Surg. 2012; 26: 117-124
        • Ibrahim O.
        • Wenande E.
        • Hogan S.
        • et al.
        Challenges to laser-assisted drug delivery: Applying theory to clinical practice.
        Lasers Surg Med. 2018; 50: 20-27
        • Taudorf E.H.
        • Lerche C.M.
        • Erlendsson A.M.
        • et al.
        Fractional laser-assisted drug delivery: Laser channel depth influences biodistribution and skin deposition of methotrexate.
        Lasers Surg Med. 2016; 48: 519-529
        • Lee W.R.
        • Shen S.C.
        • Fang C.L.
        • et al.
        Topical delivery of methotrexate via skin pretreated with physical enhancement techniques: low-fluence erbium:YAG laser and electroporation.
        Lasers Surg Med. 2008; 40: 468-476
        • Lee W.-R.
        • Shen S.-C.
        • Al-Suwayeh S.A.
        • et al.
        Laser-assisted topical drug delivery by using a low-fluence fractional laser: imiquimod and macromolecules.
        J Control Release. 2011; 153: 240-248
        • Oni G.
        • Brown S.A.
        • Kenkel J.M.
        Can fractional lasers enhance transdermal absorption of topical lidocaine in an in vivo animal model?.
        Lasers Surg Med. 2012; 44: 168-174
        • Wenande E.
        • Olesen U.H.
        • Boesen M.R.
        • et al.
        Laser-assisted delivery enhances topical uptake of the anticancer agent cisplatin.
        Drug Deliv. 2018; 25: 1877-1885
        • Haak C.S.
        • Christiansen K.
        • Erlendsson A.M.
        • et al.
        Ablative fractional laser enhances MAL-induced PpIX accumulation: Impact of laser channel density, incubation time and drug concentration.
        J Photochem Photobiol B. 2016; 159: 42-48
        • Bachhav Y.G.
        • Heinrich A.
        • Kalia Y.N.
        Using laser microporation to improve transdermal delivery of diclofenac: Increasing bioavailability and the range of therapeutic applications.
        Eur J Pharm Biopharm. 2011; 78: 408-414
        • Chen W.-Y.
        • Fang C.-L.
        • Al-Suwayeh S.A.
        • et al.
        Risk assessment of excess drug and sunscreen absorption via skin with ablative fractional laser resurfacing : optimization of the applied dose for postoperative care.
        Lasers Med Sci. 2013; 28: 1363-1374
        • Scheiblhofer S.
        • Strobl A.
        • Hoepflinger V.
        • et al.
        Skin vaccination via fractional infrared laser ablation - Optimization of laser-parameters and adjuvantation.
        Vaccine. 2017; 35: 1802-1809
        • Togsverd-Bo K.
        • Haak C.S.
        • Thaysen-Petersen D.
        • et al.
        Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial.
        Br J Dermatol. 2012; 166: 1262-1269
        • Choi S.H.
        • Kim K.H.
        • Song K.H.
        Efficacy of ablative fractional laser-assisted photodynamic therapy with short-incubation time for the treatment of facial and scalp actinic keratosis: 12-month follow-up results of a randomized, prospective, comparative trial.
        J Eur Acad Dermatol Venereol. 2015; 29: 1598-1605
        • Ko D.-Y.
        • Jeon S.-Y.
        • Kim K.-H.
        • et al.
        Fractional erbium: YAG laser-assisted photodynamic therapy for facial actinic keratoses: a randomized, comparative, prospective study.
        J Eur Acad Dermatol Venereol. 2014; 28: 1529-1539
        • Choi S.H.
        • Kim K.H.
        • Song K.-H.
        Efficacy of ablative fractional laser-assisted photodynamic therapy for the treatment of actinic cheilitis: 12-month follow-up results of a prospective, randomized, comparative trial.
        Br J Dermatol. 2015; 173: 184-191
        • Ko D.Y.
        • Kim K.H.
        • Song K.H.
        A randomized trial comparing methyl aminolaevulinate photodynamic therapy with and without Er:YAG ablative fractional laser treatment in Asian patients with lower extremity Bowen disease: results from a 12-month follow-up.
        Br J Dermatol. 2014; 170: 165-172
        • Haedersdal M.
        • Erlendsson A.M.
        • Paasch U.
        • et al.
        Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery: A critical review from basics to current clinical status.
        J Am Acad Dermatol. 2016; 74: 981-1004
        • Alexiades M.
        Randomized controlled trial of fractional carbon dioxide laser resurfacing followed by ultrashort incubation aminolevulinic acid blue light photodynamic therapy for actinic keratosis.
        Dermatol Surg. 2017; 43: 1053-1064
        • Helsing P.
        • Togsverd-Bo K.
        • Veierød M.B.
        • et al.
        Intensified fractional CO2 laser-assisted photodynamic therapy vs. laser alone for organ transplant recipients with multiple actinic keratoses and wart-like lesions: a randomized half-side comparative trial on dorsal hands.
        Br J Dermatol. 2013; 169: 1087-1092
        • Togsverd-Bo K.
        • Lei U.
        • Erlendsson A.M.
        • et al.
        Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients - a randomized controlled trial.
        Br J Dermatol. 2015; 172: 467-474
        • Lippert J.
        • Smucler R.
        • Vlk M.
        Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate.
        Dermatol Surg. 2013; 39: 1202-1208
        • Haak C.
        • Togsverd-Bo K.
        • Thaysen-Petersen D.
        • et al.
        Fractional laser-mediated photodynamic therapy of high-risk basal cell carcinomas – a randomized clinical trial.
        Br J Dermatol. 2015; 172: 215-222
        • Choi S.H.
        • Kim K.H.
        • Song K.H.
        Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial.
        J Eur Acad Dermatol Venereol. 2016; 30: 783-788
        • Choi S.-H.
        • Kim K.-H.
        • Song K.-H.
        Effect of methyl aminolevulinate photodynamic therapy with and without ablative fractional laser treatment in patients with microinvasive squamous cell carcinoma.
        JAMA Dermatol. 2017; 153: 289
        • Wenande E.
        • Hendel K.
        • Mogensen M.
        • et al.
        Efficacy and safety of laser-assisted combination chemotherapy: An explorative imaging-guided treatment with 5-fluorouracil and cisplatin for basal cell carcinoma.
        Lasers Surg Med. 2020;
        • Cavalié M.
        • Sillard L.
        • Montaudié H.
        • et al.
        Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases.
        Dermatol Ther. 2015; 28: 74-78
        • Park J.H.
        • Chun J.Y.
        • Lee J.H.
        Laser-assisted topical corticosteroid delivery for the treatment of keloids.
        Lasers Med Sci. 2017; 32: 601-608
        • Sabry H.H.
        • Abdel Rahman S.H.
        • Hussein M.S.
        • et al.
        The efficacy of combining fractional carbon dioxide laser with verapamil Hydrochloride or 5-fluorouracil in the treatment of hypertrophic scars and keloids: c Clinical and immunohistochemical study.
        Dermatol Surg. 2019; 45: 536-546
        • Waibel J.S.
        • Wulkan A.J.
        • Rudnick A.
        • et al.
        Treatment of Hypertrophic Scars Using Laser-Assisted Corticosteroid Versus Laser-Assisted 5-Fluorouracil Delivery.
        Dermatol Surg. 2019; 45: 423-430
        • Rkein A.
        • Ozog D.
        • Waibel J.S.
        Treatment of atrophic scars with fractionated CO2 laser facilitating delivery of topically applied poly-L-lactic acid.
        Dermatol Surg. 2014; 40: 624-631
        • Gawdat H.I.
        • Hegazy R.A.
        • Fawzy M.M.
        • et al.
        Autologous platelet rich plasma: topical versus intradermal after fractional ablative carbon dioxide laser treatment of atrophic acne scars.
        Dermatol Surg. 2014; 40: 152-161
        • Oni G.
        • Rasko Y.
        • Kenkel J.
        Topical lidocaine enhanced by laser pretreatment: a safe and effective method of analgesia for facial rejuvenation.
        Aesth Surg J. 2013; 33: 854-861
        • Meesters A.A.
        • Bakker M.M.
        • de Rie M.A.
        • et al.
        Fractional CO 2 laser assisted delivery of topical anesthetics: A randomized controlled pilot study.
        Lasers Surg Med. 2016; 48: 208-211
        • Tian T.
        • Luo Y.
        • Jiang T.
        • et al.
        Clinical effect of ablative fractional laser-assisted topical anesthesia on human skin: A randomized pilot study.
        J Cosmet Laser Ther. 2016; 124: 3997-4001
        • Junsuwan N.
        • Manuskiatti W.
        • Phothong W.
        • et al.
        Fractional CO(2) laser-assisted botulinum toxin type A delivery for the treatment of primary palmar hyperhidrosis.
        Lasers Med Sci. 2020;
        • Alexiades M.
        Randomized, Double-blind, split-face study evaluating fractional ablative erbium:YAG laser-mediated trans-epidermal delivery of cosmetic actives and a novel acoustic pressure wave ultrasound technology for the treatment of skin aging, melasma, and acne scars.
        J Drugs Dermatol. 2015; 14: 1191-1198
        • Mahmoud B.H.
        • Burnett C.
        • Ozog D.
        Prospective randomized controlled study to determine the effect of topical application of botulinum toxin A for crow’s feet after treatment with ablative fractional CO2 laser.
        Dermatol Surg. 2015; 41: S75-S81
        • Trelles M.A.
        • Leclère F.M.
        • Martínez-Carpio P.A.
        Fractional carbon dioxide laser and acoustic-pressure ultrasound for transepidermal delivery of cosmeceuticals: a novel method of facial rejuvenation.
        Aesthet Plast Surg. 2013; 37: 965-972
        • Waibel J.S.
        • Mi Q.-S.
        • Ozog D.
        • et al.
        Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.
        Lasers Surg Med. 2015; 48: 238-244
        • Ibrahim O.
        • Ionta S.
        • Depina J.
        • et al.
        Safety of Laser-Assisted Delivery of Topical Poly-L-Lactic Acid in the Treatment of Upper Lip Rhytides: A Prospective, Rater-Blinded Study.
        Dermatol Surg. 2019; 45: 968-974
        • Badawi A.M.
        • Osman M.A.
        Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma.
        Clin Cosmet Investig Dermatol. 2018; 11: 13-20
        • Wanitphakdeedecha R.
        • Sy-Alvarado F.
        • Patthamalai P.
        • et al.
        The efficacy in treatment of facial melasma with thulium 1927-nm fractional laser-assisted topical tranexamic acid delivery: A split-face, double-blind, randomized controlled pilot study.
        Lasers Med Sci. 2020;
        • Cohen P.R.
        Laser-assisted drug delivery for the treatment of androgenetic alopecia: ablative laser fractional photothermolysis to enhance cutaneous topical delivery of platelet-rich plasma - with or without concurrent bimatoprost and/or minoxidil.
        Dermatol Online J. 2019; 25 (13030/qt7z43d5h4)
        • Majid I.
        • Jeelani S.
        • Imran S.
        Fractional carbon dioxide laser in combination with topical corticosteroid application in resistant alopecia areata: a case series.
        J Cutan Aesthet Surg. 2018; 11: 217-221
        • Dabek R.J.
        • Roh D.S.
        • Ozdemir D.
        • et al.
        Fractional laser-assisted hair regrowth and microneedling for the treatment of alopecia areata: a review.
        Cureus. 2019; 11: e4943
        • Banzhaf C.A.
        • Thaysen-Petersen D.
        • Bay C.
        • et al.
        Fractional laser-assisted drug uptake: Impact of time-related topical application to achieve enhanced delivery.
        Lasers Surg Med. 2017; 49: 348-354
        • Helbig D.
        • Bodendorf M.O.
        • Grunewald S.
        • et al.
        Immunohistochemical investigation of wound healing in response to fractional photothermolysis.
        J Biomed Opt. 2009; 14: 64044
        • Banzhaf C.A.
        • Wind B.S.
        • Mogensen M.
        • et al.
        Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy.
        Lasers Surg Med. 2015; 48: 157-165
        • Grunewald S.
        • Bodendorf M.
        • Illes M.
        • et al.
        In vivo wound healing and dermal matrix remodelling in response to fractional CO(2) laser intervention: clinicopathological correlation in non-facial skin.
        Int J Hyperthermia. 2011; 27: 811-818
        • Haedersdal M.
        • Katsnelson J.
        • Sakamoto F.H.
        • et al.
        Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment.
        Lasers Surg Med. 2011; 43: 804-813
        • Haak C.S.
        • Farinelli W.A.
        • Tam J.
        • et al.
        Fractional laser-assisted delivery of methyl aminolevulinate: Impact of laser channel depth and incubation time.
        Lasers Surg Med. 2012; 44: 787-795
        • Mohamed H.A.
        • Mohammed G.F.
        • Gomaa A.H.
        • et al.
        Carbon dioxide laser plus topical 5-fluorouracil: a new combination therapeutic modality for acral vitiligo.
        J Cosmet Laser Ther. 2015; 17: 216-223
        • Soltani-Arabshahi R.
        • Wong J.W.
        • Duffy K.L.
        • et al.
        Facial allergic granulomatous reaction and systemic hypersensitivity associated with microneedle therapy for skin rejuvenation.
        JAMA Dermatol. 2014; 150: 68-72
        • Vachiramon V.
        • Chaiyabutr C.
        • Rattanaumpawan P.
        • et al.
        Effects of a preceding fractional carbon dioxide laser on the outcome of combined local narrowband ultraviolet B and topical steroids in patients with vitiligo in difficult-to-treat areas.
        Lasers Surg Med. 2016; 48: 197-202
        • Braun S.A.
        • Schrumpf H.
        • Buhren B.A.
        • et al.
        Laser-assisted drug delivery: mode of action and use in daily clinical practice.
        J Dtsch Dermatol Ges. 2016; 14: 480-488
        • Haedersdal M.
        • Wenande E.
        • Bay C.
        • et al.
        Comparison of tailored pretreatment regimens with microdermabrasion versus ablative fractional laser prior to daylight pdt a randomized trial: #59.
        Lasers Surg Med. 2017; 49: 21
        • Marra D.E.
        • Yip D.
        • Fincher E.F.
        • et al.
        Systemic toxicity from topically applied lidocaine in conjunction with fractional photothermolysis.
        Arch Dermatol. 2006; 142: 1024-1026
        • Glenn C.J.
        • Parlette E.C.
        • Mitchell C.
        Fractionated CO(2)laser-assisted delivery of topical 5-fluorouracil as a useful modality for treating field cutaneous squamous cell carcinomas.
        Dermatol Surg. 2015; 41: 1339-1342