Combination Treatment Approach to Melasma

      Melasma, a chronic disorder of hyperpigmentation, is due to a disruption in pigment equilibrium resulting in excess pigment production and reduced pigment clearance.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Advances in Cosmetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sheth V.M.
        • Pandya A.G.
        Melasma: a comprehensive update: part I.
        J Am Acad Dermatol. 2011; 65: 689-697
        • Yalamanchili R.
        • Shastry V.
        • Betkerur J.
        Clinico-epidemiological study and quality of life assessment in melasma.
        Indian J Dermatol. 2015; 60: 519
        • Jo H.-Y.
        • Kim C.-K.
        • Suh I.-B.
        • et al.
        Co-localization of inducible nitric oxide synthase and phosphorylated Akt in the lesional skins of patients with melasma.
        J Dermatol. 2009; 36: 10-16
        • Imokawa G.
        • Yada Y.
        • Kimura M.
        • et al.
        Granulocyte/macrophage colony-stimulating factor is an intrinsic keratinocyte-derived growth factor for human melanocytes in UVA-induced melanosis.
        Biochem J. 1996; 313: 625-631
        • Kim E.H.
        • Kim Y.C.
        • Lee E.-S.
        • et al.
        The vascular characteristics of melasma.
        J Dermatol Sci. 2007; 46: 111-116
        • Grimes P.E.
        • Yamada N.
        • Bhawan J.
        Light microscopic, immunohistochemical, and ultrastructural alterations in patients with melasma.
        Am J Dermatopathol. 2005; 27: 96-101
        • Suggs A.K.
        • Hamill S.S.
        • Friedman P.M.
        Melasma: update on management.
        Semin Cutan Med Surg. 2018; 37: 217-225
        • Pathak M.A.
        • Riley F.C.
        • Fitzpatrick T.B.
        Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light.
        J Invest Dermatol. 1962; 39: 435-443
        • Mahmoud B.H.
        • Hexsel C.L.
        • Hamzavi I.H.
        • et al.
        Effects of visible light on the skin.
        Photochem Photobiol. 2008; 84: 450-462
        • Lyons A.B.
        • Trullas C.
        • Kohli I.
        • et al.
        Photoprotection beyond ultraviolet radiation: a review of tinted sunscreens.
        J Am Acad Dermatol. 2020; https://doi.org/10.1016/j.jaad.2020.04.079
        • Kaye E.T.
        • Levin J.A.
        • Blank I.H.
        • et al.
        Efficiency of opaque photoprotective agents in the visible light range.
        Arch Dermatol. 1991; 127: 351-355
        • Boukari F.
        • Jourdan E.
        • Fontas E.
        • et al.
        Prevention of melasma relapses with sunscreen combining protection against UV and short wavelengths of visible light: a prospective randomized comparative trial.
        J Am Acad Dermatol. 2015; 72: 189-190.e1
        • Filoni A.
        • Mariano M.
        • Cameli N.
        Melasma: how hormones can modulate skin pigmentation.
        J Cosmet Dermatol. 2019; 18: 458-463
        • Sheth V.M.
        • Pandya A.G.
        Melasma: a comprehensive update: part II.
        J Am Acad Dermatol. 2011; 65: 699-714
        • Ward C.E.
        • Li J.Y.
        • Hamill S.S.
        • et al.
        Chapter 1.2 Melasma.
        in: Alexiades M. Zubek A. Cosmetic dermatologic surgery. 1st edition. Lippincott Williams & Wilkins, Philadelphia, PA2019: 17-38
        • Jimbow K.
        • Obata H.
        • Pathak M.A.
        • et al.
        Mechanism of depigmentation by hydroquinone.
        J Invest Dermatol. 1974; 62: 436-449
        • Ortonne J.-P.
        Retinoid therapy of pigmentary disorders.
        Dermatol Ther. 2006; 19: 280-288
        • Kligman A.M.
        • Willis I.
        A new formula for depigmenting human skin.
        Arch Dermatol. 1975; 111: 40-48
        • Ferreira Cestari T.
        • Hassun K.
        • Sittart A.
        • et al.
        A comparison of triple combination cream and hydroquinone 4% cream for the treatment of moderate to severe facial melasma.
        J Cosmet Dermatol. 2007; 6: 36-39
        • Nazzaro-Porro M.
        Azelaic acid.
        J Am Acad Dermatol. 1987; 17: 1033-1041
        • Baliña L.M.
        • Graupe K.
        The treatment of melasma. 20% azelaic acid versus 4% hydroquinone cream.
        Int J Dermatol. 1991; 30: 893-895
        • Zachary C.M.
        • Wang J.V.
        • Saedi N.
        Kojic acid for melasma: popular ingredient in skincare products.
        Skinmed. 2020; 18: 271-273
        • Garcia A.
        • Fulton J.E.
        The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions.
        Dermatol Surg. 1996; 22: 443-447
        • Lim J.T.
        Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid.
        Dermatol Surg. 1999; 25: 282-284
        • Ebrahimi B.
        • Naeini F.F.
        Topical tranexamic acid as a promising treatment for melasma.
        J Res Med Sci. 2014; 19: 753-757
        • Kim H.J.
        • Moon S.H.
        • Cho S.H.
        • et al.
        Efficacy and safety of tranexamic acid in melasma: a meta-analysis and systematic review.
        Acta Derm Venereol. 2017; 97: 776-781
        • Wang J.V.
        • Jhawar N.
        • Saedi N.
        Tranexamic acid for melasma: evaluating the various formulations.
        J Clin Aesthet Dermatol. 2019; 12: E73-E74
        • Del Rosario E.
        • Florez-Pollack S.
        • Zapata L.
        • et al.
        Randomized, placebo-controlled, double-blind study of oral tranexamic acid in the treatment of moderate-to-severe melasma.
        J Am Acad Dermatol. 2018; 78: 363-369
        • Bala H.R.
        • Lee S.
        • Wong C.
        • et al.
        Oral tranexamic acid for the treatment of melasma: a review.
        Dermatol Surg. 2018; 44: 814-825
        • Sarkar R.
        • Garg V.
        • Bansal S.
        • et al.
        Comparative evaluation of efficacy and tolerability of glycolic acid, salicylic mandelic acid, and phytic acid combination peels in melasma.
        Dermatol Surg. 2016; 42: 384-391
        • Hou A.
        • Cohen B.
        • Haimovic A.
        • et al.
        Microneedling: a comprehensive review.
        Dermatol Surg. 2017; 43: 321-339
        • Lima E. de A.
        Microneedling in facial recalcitrant melasma: report of a series of 22 cases.
        An Bras Dermatol. 2015; 90: 919-921
        • Trivedi M.K.
        • Yang F.C.
        • Cho B.K.
        A review of laser and light therapy in melasma.
        Int J Womens Dermatol. 2017; 3: 11-20
        • Li Y.-H.
        • Chen J.Z.S.
        • Wei H.-C.
        • et al.
        Efficacy and safety of intense pulsed light in treatment of melasma in Chinese patients.
        Dermatol Surg. 2008; 34 ([discussion 700–1]): 693-700
        • Wang C.-C.
        • Hui C.-Y.
        • Sue Y.-M.
        • et al.
        Intense pulsed light for the treatment of refractory melasma in Asian persons.
        Dermatol Surg. 2004; 30: 1196-1200
        • Kauvar A.N.B.
        The evolution of melasma therapy: targeting melanosomes using low-fluence Q-switched neodymium-doped yttrium aluminium garnet lasers.
        Semin Cutan Med Surg. 2012; 31: 126-132
        • Kauvar A.N.B.
        Successful treatment of melasma using a combination of microdermabrasion and Q-switched Nd:YAG lasers.
        Lasers Surg Med. 2012; 44: 117-124
        • Shin J.U.
        • Park J.
        • Oh S.H.
        • et al.
        Oral tranexamic acid enhances the efficacy of low-fluence 1064-nm quality-switched neodymium-doped yttrium aluminum garnet laser treatment for melasma in Koreans: a randomized, prospective trial.
        Dermatol Surg. 2013; 39: 435-442
        • Li J.Y.
        • Geddes E.R.
        • Robinson D.M.
        • et al.
        A review of melasma treatment focusing on laser and light devices.
        Semin Cutan Med Surg. 2016; 35: 223-232
        • Ross V.
        • Naseef G.
        • Lin G.
        • et al.
        Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium:YAG lasers.
        Arch Dermatol. 1998; 134: 167-171
        • Vachiramon V.
        • Iamsumang W.
        • Triyangkulsri K.
        Q-switched double frequency Nd:YAG 532-nm nanosecond laser vs. double frequency Nd:YAG 532-nm picosecond laser for the treatment of solar lentigines in Asians.
        Lasers Med Sci. 2018; 33: 1941-1947
        • Lee M.-C.
        • Lin Y.-F.
        • Hu S.
        • et al.
        A split-face study: comparison of picosecond alexandrite laser and Q-switched Nd:YAG laser in the treatment of melasma in Asians.
        Lasers Med Sci. 2018; 33: 1733-1738
        • Choi Y.-J.
        • Nam J.-H.
        • Kim J.Y.
        • et al.
        Efficacy and safety of a novel picosecond laser using combination of 1 064 and 595 nm on patients with melasma: a prospective, randomized, multicenter, split-face, 2% hydroquinone cream-controlled clinical trial.
        Lasers Surg Med. 2017; 49: 899-907
        • Chen Y.-T.
        • Lin E.-T.
        • Chang C.-C.
        • et al.
        Efficacy and safety evaluation of picosecond alexandrite laser with a diffractive lens array for treatment of melasma in asian patients by VISIA imaging system.
        Photobiomodul Photomed Laser Surg. 2019; 37: 559-566
        • Chalermchai T.
        • Rummaneethorn P.
        Effects of a fractional picosecond 1,064 nm laser for the treatment of dermal and mixed type melasma.
        J Cosmet Laser Ther. 2018; 20: 134-139
        • Hantash B.M.
        • Bedi V.P.
        • Sudireddy V.
        • et al.
        Laser-induced transepidermal elimination of dermal content by fractional photothermolysis.
        J Biomed Opt. 2006; 11: 041115
        • Manstein D.
        • Herron G.S.
        • Sink R.K.
        • et al.
        Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury.
        Lasers Surg Med. 2004; 34: 426-438
        • Wang J.V.
        • Christman M.P.
        • Feng H.
        • et al.
        Laser-assisted delivery of tranexamic acid for melasma: pilot study using a novel 1927nm fractional thulium fiber laser.
        J Cosmet Dermatol. 2020; https://doi.org/10.1111/jocd.13817
        • Kong S.H.
        • Suh H.S.
        • Choi Y.S.
        Treatment of melasma with pulsed-dye laser and 1,064-nm Q-switched Nd:YAG laser: a split-face study.
        Ann Dermatol. 2018; 30: 1-7
        • Geddes E.R.C.
        • Stout A.B.
        • Friedman P.M.
        Retrospective analysis of the treatment of melasma lesions exhibiting increased vascularity with the 595-nm pulsed dye laser combined with the 1927-nm fractional low-powered diode laser.
        Lasers Surg Med. 2017; 49: 20-26
        • Passeron T.
        • Fontas E.
        • Kang H.Y.
        • et al.
        Melasma treatment with pulsed-dye laser and triple combination cream: a prospective, randomized, single-blind, split-face study.
        Arch Dermatol. 2011; 147: 1106-1108
        • Zaleski-Larsen L.A.
        • Fabi S.G.
        Laser-assisted drug delivery.
        Dermatol Surg. 2016; 42: 919-931