Advertisement
Review Article| Volume 5, ISSUE 1, P145-155, May 2022

Download started.

Ok

Update on Facial Noninvasive Skin Tightening

      The demand for skin tightening procedures with minimal downtime is rapidly increasing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Cosmetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American society for dermatologic surgery survey on dermatologic procedures. Report of 2019 procedures.
        (Available at:) (September 27, 2021)
        • Fisher G.J.
        • Kang S.
        • Varani J.
        • et al.
        Mechanisms of photoaging and chronological aging.
        Arch Dermatol. 2002; 138: 1462-1470
        • Dimri G.P.
        • Lee X.
        • Basile G.
        • et al.
        A biomarker that identifies senescent human cells in culture and in aging skin in vivo.
        Proc Natl Acad Sci U S A. 1995; 92: 9363-9367
        • Varani J.
        • Dame M.K.
        • Rittie L.
        • et al.
        Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation.
        Am J Pathol. 2006; 168: 1861-1869
        • Shin J.W.
        • Kwon S.H.
        • Choi J.Y.
        • et al.
        Molecular mechanism of dermal aging and antiaging approaches.
        Int J Mol Sci. 2019; 20: 2126
        • Sachs D.L.
        • Varani J.
        • Chubb H.
        • et al.
        Atrophic and hypertrophic photoaging: clinical, histologic, and molecular features of 2 distinct phenotypes of photoaged skin.
        J Am Acad Dermatol. 2019; 81: 480-488
        • Kirsch K.M.
        • Zelickson B.D.
        • Zachary C.B.
        • et al.
        Ultrastructure of collagen thermally denatured by microsecond domain pulsed carbon dioxide laser.
        Arch Dermatol. 1998; 134: 1255-1259
        • Orringer J.S.
        • Kang S.
        • Johnson T.M.
        • et al.
        Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin.
        Arch Dermatol. 2004; 140: 1326-1332
        • El-Domyati M.
        • El-Ammawi T.S.
        • Medhat W.
        • et al.
        Expression of transforming growth factor-β after different non-invasive facial rejuvenation modalities.
        Int J Dermatol. 2015; 54: 396-404
        • Manuskiatti W.
        • Fitzpatrick R.E.
        • Goldman M.P.
        Long-term effectiveness and side effects of carbon dioxide laser resurfacing for photoaged facial skin.
        J Am Acad Dermatol. 1999; 40: 401-411
        • Anderson R.R.
        • Parrish J.A.
        Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation.
        Science. 1983; 220: 524-527
        • Manstein D.
        • Herron G.S.
        • Sink R.K.
        • et al.
        Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury.
        Lasers Surg Med. 2004; 34: 426-438
        • Fitzpatrick R.E.
        • Goldman M.P.
        • Satur N.M.
        • et al.
        Pulsed carbon dioxide laser resurfacing of photo-aged facial skin.
        Arch Dermatol. 1996; 132: 395-402
        • Alster T.S.
        Cutaneous resurfacing with CO2 and erbium: YAG lasers: preoperative, intraoperative, and postoperative considerations.
        Plast Reconstr Surg. 1999; 103: 619-632
        • Ortiz A.E.
        • Goldman M.P.
        • Fitzpatrick R.E.
        Ablative CO2 lasers for skin tightening: traditional versus fractional.
        Dermatol Surg. 2014; 40: S147-S151
        • Khatri K.A.
        • Ross V.
        • Grevelink J.M.
        • et al.
        Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides.
        Arch Derm. 1999; 135: 391-397
        • Newman J.B.
        • Lord J.L.
        • Ash K.
        • et al.
        Variable pulse erbium:YAG laser skin resurfacing of perioral rhytides and side-by-side comparison with carbon dioxide laser.
        Lasers Surg Med. 2000; 26: 208-214
        • Cohen J.L.
        • Ross E.V.
        Combined fractional ablative and nonablative laser resurfacing treatment: a split-face comparative study.
        J Drugs Dermatol. 2013; 12: 175-178
        • Dayan E.
        • Burns A.J.
        • Rohrich R.J.
        • et al.
        The use of radiofrequency in aesthetic surgery.
        Plast Reconstr Surg Glob Open. 2020; 8: e2861
        • Zelickson B.D.
        • Kist D.
        • Berstein E.
        • et al.
        Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study.
        Arch Dermatol. 2004; 140: 204-209
        • Fitzpatrick R.
        • Geronemus R.
        • Goldberg D.
        • et al.
        Multicenter study of noninvasive radiofrequency for periorbital tissue tightening.
        Lasers Surg Med. 2003; 33: 232-242
        • Alster T.S.
        • Tanzi E.
        Improvement of neck and cheek laxity with a nonablative radiofrequency device: a lifting experience.
        Dermatol Surg. 2004; 30: 503-507
        • Nahm W.K.
        • Su T.T.
        • Rotunda A.M.
        • et al.
        Objective changes in brow position, superior palpebral crease, peak angle of the eyebrow, and jowl surface area after volumetric radiofrequency treatment to half of the face.
        Dermatol Surg. 2004; 30: 922-928
        • Burnes J.A.
        Thermage: monopolar radiofrequency.
        Aesthet Surg J. 2005; 25: 38-42
        • Finzi E.
        • Spangler A.
        Multipass vector (mpave) technique with nonablative radiofrequency to treat facial and neck laxity.
        Dermatol Surg. 2005; 31: 916-922
        • Weiss R.A.
        • Weiss M.A.
        • Munavalli G.
        • et al.
        Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments.
        J Drugs Dermatol. 2006; 5: 707-712
        • Kist D.
        • Burns A.J.
        • Sanner R.
        • et al.
        Ultrastructural evaluation of multiple pass low energy versus single pass high energy radiofrequency treatment.
        Lasers Surg Med. 2006; 38: 150-154
        • Dover J.S.
        • Zelickson B.
        14-Physician Multispecialty Consensus Panel. Results of a survey of 5,700 patient monopolar radiofrequency facial skin tightening treatments: assessment of low-energy multiple-pass technique leading to a clinical endpoint algorithm.
        Dermatol Surg. 2007; 33: 900-907
        • Chapas A.
        • Biesman B.S.
        • Chan H.H.
        • et al.
        Consensus recommendations for 4th generation non-microneedling monopolar radiofrequency for skin tightening: a Delphi consensus panel.
        J Drugs Dermatol. 2020; 19: 20-26
        • Friedman D.J.
        • Gilead L.T.
        The use of hybrid radiofrequency device for the treatment of rhytides and lax skin.
        Dermatol Surg. 2007; 33: 543-551
        • Javate R.M.
        • Crus Jr., R.T.
        • Khan J.
        • et al.
        Nonablative 4-MHz dual radiofrequency wand rejuvenation treatment for periorbital rhytides and midface laxity.
        Ophthalmic Plast Reconstr Surg. 2011; 27: 180-185
        • Doshi S.N.
        • Alster T.S.
        Combination radiofrequency and diode laser for treatment of facial rhytides and skin laxity.
        J Drugs Dermatol. 2005; 7: 11-15
        • Sadick N.S.
        • Alexiades-Armenakas M.
        • Bitter J.P.
        • et al.
        Enhanced full-face skin rejuvenation using synchronous intense pulsed optical and conducted bipolar radiofrequency energy (ELOS): introducing selective radiophotothermolysis.
        J Drugs Dermatol. 2005; 4: 181-186
        • Gold M.H.
        • Goldman M.P.
        • Rao J.
        • et al.
        Treatment of wrinkles and elastosis using vacuum-assisted bipolar radiofrequency heating the dermis.
        Dermatol Surg. 2007; 33: 300-309
        • Dendle J.
        • Wu D.C.
        • Fabi S.G.
        • et al.
        A retrospective evaluation of subsurface monopolar radiofrequency for lifting of the face, neck, and jawline.
        Dermatol Surg. 2016; 42: 1261-1265
        • Alessa D.
        • Bloom J.D.
        Microneedling options for skin rejuvenation including non-temperature-controlled fractional microneedle radiofrequency treatment.
        Facial Plast Surg Clin North Am. 2020; 28: 1-7
        • Tremaine A.M.
        • Avram M.M.
        FDA MAUDE data on complications with lasers, light sources, and energy-based devices.
        Lasers Surg Med. 2015; 47: 133-140
        • Felipe I.D.
        • Del Cueto S.R.
        • Perez E.
        • et al.
        Adverse reactions after nonablative radiofrequency: follow-up of 290 patients.
        J Cosmet Dermatol. 2007; 6: 163-166
        • Miller D.L.
        • Smith N.B.
        • Bailey M.R.
        • et al.
        Overview of therapeutic ultrasound applications and safety considerations.
        J Ultrasound Med. 2012; 31: 623-634
        • Sklar L.R.
        • El Tal A.K.
        • Kerwin L.Y.
        Use of transcutaneous ultrasound for lipolysis and skin tightening: a review.
        Aesthet Plast Surg. 2014; 38: 429-441
        • Park J.Y.
        • Lin F.
        • Suwanchinda A.
        • et al.
        Customized treatment using microfocused ultrasound with visualization for optimized patient outcomes: a review of skin tightening energy technologies and a pan-Asian adaptation of the expert panel's gold standard consensus.
        J Clin Aesthet Dermatol. 2021; 14: E70-E79
        • Laubach H.J.
        • Makin I.R.S.
        • Barthe P.G.
        • et al.
        Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation in the skin.
        Dermatol Surg. 2008; 34: 727-734
        • Okuda I.
        • Yoshioka N.
        • Shirakabe Y.
        • et al.
        Basic analysis of facial aging: the relationship between the superficial musculoaponeurotic system and age.
        Exp Dermatol. 2019; 28: 38-42
        • Alam M.
        • White L.E.
        • Martin N.
        • et al.
        Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study.
        J Am Acad Dermatol. 2010; 62: 262-269
        • Suh D.H.
        • Shin M.K.
        • Lee S.J.
        • et al.
        Intense focused ultrasound tightening in Asian skin: clinical and pathologic results.
        Dermatol Surg. 2011; 37: 1595-1602
        • Lee H.S.
        • Jang W.S.
        • Cha Y.J.
        • et al.
        Multiple pass ultrasound tightening of skin laxity of the lower face and neck.
        Dermatol Surg. 2012; 38: 20-27
        • Baumann L.
        • Zelickson B.
        Evaluation of micro-focused ultrasound for lifting and tightening of neck laxity.
        J Drugs Dermatol. 2016; 15: 607-614
        • Fabi S.G.
        • Massaki A.
        • Eimpunth S.
        • et al.
        Evaluation of microfocused ultrasound with visualization wrinkling, tightening, and wrinkle reduction of the decolletage.
        J Am Acad Dermatol. 2014; 69: 965-971
        • Fabi S.G.
        • Goldman M.P.
        Retrospective evaluation of micro-focused ultrasound for lifting and tightening of the face and neck.
        Dermatol Surg. 2014; 40: 569-575
        • Fabi S.G.
        • Joseph J.
        • Sevi J.
        • et al.
        Optimizing patient outcomes by customizing treatment with microfocused ultrasound with visualization: gold standard consensus guidelines from an expert panel.
        J Drugs Dermatol. 2019; 18: 426-432
        • Amir R.
        A novel approach to treating fine lines and wrinkles of the face using synchronous ultrasound parallel beam technology SUPERBTM.
        (Available at:) (September 27, 2021)
        • Harris M.O.
        • Sundaram H.A.
        Safety of microfocused ultrasound with visualization in patients with Fitzpatrick skin phototypes III to VI.
        JAMA Facial Plast Surg. 2015; 17: 355-357
        • Friedmann D.P.
        • Bourgeois G.P.
        • Chan H.H.L.
        • et al.
        Complications from microfocused transcutaneous ultrasound: case series and review of the literature.
        Lasers Surg Med. 2017; 50: 13-19
        • Russe E.
        • Purschke M.
        • Farinelli W.A.
        • et al.
        Micro-fractional, directional skin tightening: a porcine model.
        Lasers Surg Med. 2016; 48: 264-269
        • Banzhaf C.A.
        • Wind B.S.
        • Mogensen M.
        • et al.
        Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy.
        Lasers Surg Med. 2016; 48: 157-165
        • Friedman D.P.
        • Fabi S.G.
        • Goldman M.P.
        Combination of intense pulsed light, sculptra, and ultherapy for treatment of the aging face.
        J Cosmet Dermatol. 2014; 13: 109-118
        • Langelier N.
        • Beleznay K.
        • Woodward J.
        Rejuvenation of the upper face and periocular region: combining neuromodulator, facial filler, laser, light, and energy-based therapies for optimal results.
        Dermatol Surg. 2016; 42: S77-S82
        • Alhaddad M.
        • Wu D.C.
        • Bolton J.
        • et al.
        A randomized, split-face, evaluator-blind clinical trial comparing monopolar radiofrequency versus microfocused ultrasound with visualization for lifting and tightening of the face and upper neck.
        Dermatol Surg. 2019; 45: 131-139